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Markov Chains with Exponentially Small Transition 
Probabilities: First Exit Problem from a General 
Domain. I. The Reversible Case 
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We consider general ergodic aperiodic Markov chains with finite state space 
whose transition probabilities between pairs of different communicating states 
are exponentially small in a large parameter ft. We extend previous results by 
M. L Freidlin and A. D. WentzeIl (FW) on the first exit problem from a general 
domain Q. In the present paper we analyze the case of reversible Markov chains. 
The general case will be studied in a forthcoming paper. We prove, in a purely 
probabilistic way and without using the FW graphical technique, some results 
on the first exit problem from a general domain Q containing many attractors. 
In particular we analyze the properties of special domains called cycles and, by 
using the new concept of temporal eno'opy, we obtain new results leading to a 
complete description of the typical tube of trajectories during the first excursion 
outside Q. 

KEY WORDS: Markov chains; first exit problem; large deviations; rever- 
sibility. 

1. I N T R O D U C T I O N  

In  th i s  p a p e r  we c o n s i d e r  e rgod ic ,  a p e r i o d i c  M a r k o v  c h a i n s  w i t h  f inite s t a t e  

space  S a n d  w i t h  t r a n s i t i o n  p r o b a b i l i t i e s  P(x ,  y )  sa t i s fy ing  t he  fol lowing:  

P r o p e r t y  ~ .  I f  x a n d  y a re  c o m m u n i c a t i n g  s ta tes ,  i.e., x :/: y a n d  

P(x,  y)  > 0, t h e n  

e x p ( - , d ( x , y ) f l - - y f l ) < ~ P ( x , y ) < ~ e x p ( - d ( x , y ) f l + ? f l )  ( l . l )  
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where A(., .) is a nonnegative function on the set of pairs of communi- 
cating states and y -~ 0 as fl ~ ~ .  

Freidlin and Wentzell introduced this kind of Markov chain as 
an auxiliary structure in their study of the asymptotic properties of diffu- 
sion processes describing small random perturbations of dynamical 
systems. 

Another very interesting application, which actually is our main 
motivation, comes from nonequilibrium statistical mechanics: stochastic 
dynamics for interacting particle systems at very low temperature, like 
Glauber dynamics for Ising-like models, in a finite volume, satisfy Property 

(in this case fl is the inverse temperature). (see, e.g., refs. 8, 9, 7, 11, 5, 
6, and 3.) 

We will mainly study the problem of the first exit from a domain 
Q c S containing many attracting equilibrium states for the dynamics at 
f l=  or. Many results on this subject are already known: in particular, 
Freidlin and Wentzell proved estimates for the average exit time and the 
typical point, on the boundary of Q, reached during the first excursion out- 
side Q. They also describe the tube of typical trajectories exiting from Q 
when this set contains a unique attracting state. 

The study of the typical exiting trajectories is of fundamental impor- 
tance and, in a certain sense, it is the central problem in the description of 
nucleation phenomena in the framework of general stochastic Ising 
models. ~1~'5"6) In that case we are interested in the analysis of a typical 
sequence of growing droplets and in particular in their shapes. Indeed the 
growth of the so-called critical nucleus can be seen as a particular case of 
the first exit from a noncompletely attracted domain. 

It turns out, by looking at several particular models, that a crucial 
ingredient in the description of the growth is given by the resistance 
times inside some subsets of Q. These can be considered as a sort of 
temporal entropy related to fluctuations taking place during suitable 
random times which grow exponentially fast in ft. This temporal entropy 
turns out to be necessary to give rise to an efficient escape mechanism. 
Neglecting these random fluctuations during the escape would lead to a 
mechanism extremely depressed in probability. Apparently the impor- 
tance of these time fluctuations escaped many previous researchers on 
the subject. 

We can say that the last escape from Q occurs in a very different way 
in the two cases of one or several attracting points in Q. In the completely 
attracted case, the typical trajectories during the first excursion outside Q 
spend a finite time independent of fl to bring the process out of Q without 
any "hesitation." In the general case the last escape takes place by visiting 
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a suitable sequence of more or less stable attractors z~ ..... z, and spending 
some suitable random times inside certain domains A~ ..... A,, which can 
be considered as sort of generalized basins of attraction of z~ ..... z,,, 
respectively. 

We can say that the formulation of the problem of the characterization 
of the tube of typical exiting trajectories in the general case requires new 
concepts with respect to what has been done in the completely attracted 
case. 

On one hand, our work can be considered as a completion and a 
generalization of the results contained in Chap. 6 of Freidlin and Wentzell's 
book; (4) on the other hand, we formulate a general setup useful to treat, in 
a unified way, a large class of stochastic dynamics. 

Our results are general and we are able to reduce the solution of the 
above-mentioned typical large-deviation problem connected to the escape 
from a general domain, to the solution of a well-defined sequence of 
variational problems. These variational problems constitute the model- 
dependent work to be done. In other words, we state the results concerning 
the general behavior of the class of Markov chains satisfying property ~ by 
specifying their common features and by reducing the model-dependent 
work to the solution of some well-specified problems whose formulation 
can be given in general, 

In the present paper we concentrate on the reversible case (see 
Hypothesis M in Sec. 3) where the unique invariant measure p of the chain 
has the Gibbsian form p = e x p ( - f l H ) / Z  with a given energy function H 
on S. 

For the general case we just give here the formulation of the problem, 
the complete treatment being the object of a forthcoming paper. 

The discussion of the general case will require some generalization of 
the graphical technique introduced by Freidlin and Wentzel (see ref. 4, 
p. 177) and, more important, the use of the approach introduced by one of 
the authorsJ 12) This approach is based on the notion of renormalized 
chains, obtained by a time rescaling related to the degree of stability of 
different attracting equilibrium states. 

The reversible case is much easier. The crucial point of our approach 
to that case is to base our discussion on the analysis of the "energy 
landscape." 

We will provide new probabilistic proofs of results obtained by 
Freidlin and Wentzell with their graphical technique. Moreover, we will 
prove new results on the characterization of the tube of typical exiting 
trajectories. 

The paper is organized as follows: In Section 2 we first discuss the case 
of a completely attracted domain and we outline the differences and the 
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difficulties arising in the general, not completely attracted case. Then we 
recall some notions relative to the renormalized chains; finally we state the 
problem for the general case and we sketch the strategy for its solution. 

The rest of the paper is devoted to the reversible case. 
In Section 3 we first give definitions and properties concerning the so- 

called cycles; then we provide alternative and explicit proofs of known 
results about the asymptotics of first exit times and first exit points from a 
class of not completely attracted domains. 

In Section 4 we state and prove our new results concerning the typical 
tube of trajectories during the first descent to the bottom of a domain 
(Theorem 1) or during the first escape (Theorem 2). 

2. THE EXIT PROBLEM AND THE RENORMALIZAT ION 
PROCEDURE 

Let X,  be a Markov chain satisfying Property ~ above; given any set 
of states Q = S, we wilt denote by rQ the first hitting time to Q: 

ro  = min{t > O; X,E Q} 

We define the (outer) boundary OQ of Q as the set 

OO= { x C Q  : 3x' e Q : P(x ' ,  x ) > 0 }  

A first description of the exit of the chain X, from the set Q can be given 
by means of the following two quantities: the expectation of the first exit 
time from Q, 

E , .~o  (2.1) 

and the spatial distribution of the first exit, 

Px(X~  e = y)  (2.2) 

with x s Q, y s OQ (we denote by Px the probability distribution on the 
process starting from x at t = 0; Ex denotes the corresponding expectation). 

Estimates of the quantities (2.1) and (2.2), from above and from 
below, are given by Freidlin and WentzellJ 4~ In fact they study diffusion 
process, describing small random perturbations of dynamical systems with 
the help of discrete Markov chains satisfying property ~.  They show that 
the quantities (2.1) and (2.2) can be expressed in terms of sums of products 
of transition probabilities of the chain, and these products can be defined 
by means of graphs of arrows. Then their estimates can be reduced to a 
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problem of minimization of a suitbale cost function associated with each 
graph (see ref. 4, Chapter  6, Section 3, p. 176). 

Similar to what  was done by Freidlin and Wentzel in the continuous 
case, we can develop for our  Markov  chains the usual theory of large 
deviations. To  each path,  i.e., to each function q~: N- - .  S, ~b= {~b,},~N, we 
can associate a functional 

t - - 1  

I to .o(~b)-  ~ A(~bi, ~bi+,) (2.3) 
i = o  

where the function A(x,y)  is defined in (1.1) and we set A(x, x ) = 0  for 
each x ~ S and A(x, y) = ov if P(x, y) = 0. This functional can be interpreted 
as the cost function of each path ~b, and the corresponding large-deviation 
estimates can be easily proved. ~'2) 

L e m m a  2.1.  Let ~b e a fixed function starting from x at time 0; 
then: 

(i) We have 

P,.(X~. = ~b,, Vs ~ [0 ,  t ] )  ~< e -zt~ ~'m 

(ii) If~b is such that  ~bs:~b~.+t for any s t [ 0 ,  t ] ,  then we have also 
a lower bound: 

P.,.(X.,. = ~b,., Vs~ [0, t])>~e-tt~ ~r 

(iii) For  any constant  I o > 0 ,  for any sufficiently small ~ > 0  [ a  
strictly less than the minimal positive value of the function 
A( . , .  )], for any t < e ~#, and for any sufficiently large fl 

sup P,.(Ito.,](X~) >1 Io) <~ e -z~ 
x 

where e ~ O  as f l ~  ~ .  

An equivalence relation in the state space S can be defined by means 
of the functional lto.q(~b): for each pair  of  states x, y we define 

V(x, y) =- inf Ito,,](~b) (2.4) 
c r 1 6 2  ~ x , ~ r  = 3' 

and we set 

x ~ y iff V(x, y) = V(y, x) = 0 

( x ) ~ -  { y s S ; y ~ x }  
(2.5) 
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We say that x is a stable state if and only if 

for any y , ~ x ,  V ( x , y ) > O  (2.6) 

i.e., if each path leaving from x has a positive cost. 
We will denote by M the set of  stable states. 
It is immediate to see that if the set M contains a state x, then it 

contains the whole equivalence class of  x, namely M =  (x)~ .  
An immediate consequence of Lemma 2.1 is the following Lemma 2.2, 

whose proof  can be found in ref. 12. 

k e m m a  2.2. There exist constants Toe [0, ISI] and flo such that 
for any fl > flo: 

(i) For  any t >  To: 

sup P x( Z M > t) <~ a t '/T~ 
x ~ S  

with a - - - 1 -  C r" for some constant 0 < C <  1 and where [ - ]  denotes the 
integer part. 

(ii) For  any r />  0, for any t >>, e '~n and fl sufficiently large we have 

sup P.,-(rg > t) ~< exp{ - - e  '111/2 } 
. v ~ S  

Let us now come back to the problem of the exit of  our chain X, from 
a domain Q and let us suppose that this set contains a unique stable state 
x o which is a global attractor for Q in the sense that for each y ~ Q there 
exists a path Y0 = Y, Y ~ ..... y,, = x o such that A(y ~, Yi + 1 ) = 0 Vi < n, whereas 
for each 3,~ Q, z eOQ,  we have A ( y , z ) > O .  In this case Freidlin and 
Wentzell can describe in complete detail the exit from Q. 

We give their result in the discrete case of  Markov  chains (see ref. 4, 
Chapter 4, Theorem 2.3 for the continuous version of  this result). 

We want to notice here that in the continuous case of  diffusion 
processes discussed in ref. 4, the dynamics corresponding to zero random 
noise was given by a dynamical system: the unperturbed system was com- 
pletely deterministic and then for each starting point there was a unique 
deterministic path emerging from it. The tube of typical exiting trajectories 
was given in that case as a neighborhood in the uniform topology of such 
a deterministic path. 

Here, in the discrete case of  Markov  chains the situation is different 
and even for fl = oo the system can still be random. This means that there 
is not  a unique deterministic path, but, in general, several possible paths 
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emerging from the same starting point. Moreover, we do not have to 
consider a neighborhood, since the space is discrete. So the typical exiting 
tube in this case is a finite set of individual paths. 

P r o p o s i t i o n  2.1. Let Q be a set of states containing a unique 
stable state Xo and for each ~ and fl define 

~ . #  = { { ~.,.} ~ ~ N; Cko = Xo, (k r~ �9 OQ, ck.~ �9 Q, Vs < T~, with T~ < e ~p} (2.7) 

and 

~ , p =  {~bs�9 4)~,#; Ito, r~l(~b)= min V(xo,y)} (2.8) 
yeOe 

For any given sufficiently small ~ (see Lemma 2.1) we have 

lim Px(Xo~0+,=~b ,, Vt=0 ..... rae-0,.o, for some ~,#)= I (2.9) 
fl~oD 

where 0x0 = max{ t < rae; X, = Xo}. 

A proof of this proposition can be easily obtained by applying 
Lemmas 2.1 and 2.2. Indeed, by Lemma 2.2 we are able to exclude that 
r o e -  0,0 is exponentially too large in fl, and then we can apply the large- 
deviation estimates. More precisely, the probability of the complementary 
event can be estimated from above as follows: 

_p,.( { x ~ ,~Q- O.,o r , ~  p) 
Oxo+ t )  t = 0  

= ~ ex(E{x~+,}~'~o'r c~ EOxo=S]) 
s = O  

P.,~([ { X, ,~ :~ c~ [Xs, �9  Q, Vs' <s, X s = x  o, X:.+, :~Xo] + J t ~ O  
s : O  

n [ X,!,.~L, eo �9 OQ]) (2.10) 

where 

vt>s) = m i n { t > s ; X , � 9  
x 0  ~ a Q  - -  

The r.h.s, of (2.10) can be estimated, by using the Markov property, as 
follows: 

<~ ~ px(roe>s  ) p,o([{X,},=or n [XI eXo,  X,.~o~oe�9 
s = O  

<~ ExroQ. {exo([ {X,} i~ r ~,.p] n IX,  e Xo, X,.~o~oe�9 ) 

+ ?xo({ x,} ,:o~'~ e=, p\~:,#)} 
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~< { exp[ min V(xo, y)fl + 6/33 } 
),eOQ 

x {exp( - - e  a#/2) -b P(Ito.:p~(Xs(Xo)) >1 min V(x o, y) + d)} 
:,eOQ 

for some positive constant d. The theorem follows by applying Lemma 2.1 
and by using the fact that 6 goes to 0 as fl -~ oo while d is fixed. 

We remark that in this proposition the hypothesis of the uniqueness of 
the stable state in Q is crucial; in fact the large-deviation estimate can be 
applied, here as in the continuous case, only on intervals of time which do 
not grow too fast in fl (they have to be bounded by e ~p with a sufficiently 
small). However, if the set Q contains several stable states, then the func- 
tions in ~ . p  can (and we will see that they do) visit, before leaving Q, 
other stable states where the process is likely to spend exponentially long 
times. This means that in this case, due to the above-mentioned resistance 
times, the time raQ-Oxo is exponentially large with large probability. Thus 
an extension of Proposition 2.1 to a general domain Q would require a 
control on large-deviation estimates over exponentially long intervals of 
time. This is the crucial point to be solved. New ideas and techniques are 
necessary; new concepts will be needed to define the tube. 

To solve this problem we will use a renormalization procedure for 
Markov chains satisfying Property ~ ,  representing a completely different 
approach to the study of the long-time behavior of Markov chainsJ 12) 

The main idea of this renormalization procedure can be summarized 
as follows. 

The behavior of the chain X, involves a sequence of different time 
scales TI, T2, T 3 ..... exponentially large in fl, related to the stability of the 
different states. Corresponding to any time scale Ti it is possible to define 
a renormalized chain X~/) by means of a pathwise construction. Xt/~ 
describes, on its times of order one, the behavior of the original chain X, 
on times of order T~. Indeed, Xt/I is a coarse-grained version of the chain 
X, in the sense that it gives a less detailed description of the process, but 
the loss of information concerns only events which occur in a typical time 
less than or equal to 7",.. 

The state spaces S "), i =  1,2 ..... of the renormalized chains Xc, ;), 
i =  1, 2,..., are smaller and smaller and they contain states that are more 
and more stable. The sequence of chains Xt/~ is constructed iteratively, and 
the transition probabilities P")(x,y) still satisfy Property ~ with suitable 
functions A")(x, y). At each step of the iteration the equivalence classes of 
stable states of the chain XC/) constitute the states of the new chain X~, ;+~). 

This sequence of renormalized chains has been used in refs. 12-14; it 
constitutes a possible alternative approach (w.r.t. the one due to Freidlin 
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and Wentzell) to get control of quantities like (2.1), (2.2), and the invariant 
measure. 

Here we propose a new application of this renormalization procedure: 
we use the renormalized chains Xt, '~ to control the large-deviation 
phenomena for the Markov chain X, taking place during exponentially 
long times T,.. 

This renormalization procedure is then the new ingredient necessary 
for the construction of the exiting tube from a general domain Q con- 
taining several stable states. 

A complete development of this idea will be given in ref. 10. Here we 
only give an outline of the basic strategy and some simple preliminary 
results. 

In order to simpify the description of the first exit from the domain Q 
of a Markov chain X, we can consider a new auxiliary chain X, e on the 
state space Q w OQ which is equivalent to X, up to its first exit from Q, but 
with almost absorbing states in OQ. More precisely, we define the following 
transition probabilities: 

PQ(x,y)=P(x,y)  for any x e Q  (2.11) 

PQ(x,y)=e-Pa~~ for xeOQ, y r  (2.12) 

where A(OQ) > Y'..,,,~Q A(y, z). 
It is to this chain that we apply the renormalization procedure by 

introducing the sequence of renormalized chains X~, ~ ..... XI, ;~ .... and the 
corresponding sequence of state spaces S Ill ..... S ~/~ ..... We warn the reader 
of an abuse of notation: we will omit, for the rest of this section, the super- 
script Q. 

Since A(OQ) > Z,,.~ o d(y, z), it is immediate to show that there exists 
a step N of the iteration such that in Q there are only unstable states. More 
precisely, let N=N(Q)=  inf{n; S " +  i I c OQ}; then X ~NI has stable states 
only on the boundary of Q and all the states in OQ are stable. Thus the 
description of the exit from Q for the chain X~, m is an easy task, since it 
is a downhill exiting. This means that for each x s SINI c~ Q there exists at 
least a time k ' a n d  a sequence X~o N) ..... x~ N) of states in S ~NI such that 

A~mt..~m ..~m ~=0  for each i<k. - I m e Q  W<k,  x~kmeOQ, and ~ ,~i ,~i+lJ X(O N} ~ X ,  .t  i 

The sequence ,,~m ,,~m is not necessarily unique and it represents a 
typical exit path from Q for the chain X ~m. 

Let us first suppose that this exiting path is unique. We can then give 
a first approximation of the tube of trajectories that the stochastic process 
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follows with probability almost one when exiting from the domain Q 
starting from x �9 S 'N) c~ Q. Indeed, let 

~b(S) = { {q~;} ,~N, ~ �9 S} (2.13) 

be the space of all the trajectories of the Markov chain X,. 
Since the renormalized chains are constructed path by path, to each 

path ~ � 9  ~(S)  we can associate a renormalized path ~ l ~ e ~ ( S l l ) ) .  
In this way we can define, for every ~ �9 ~(S),  a sequence of trajectories 

{~I")} i~N in the spaces ~ ( S  ''~ with n = 2 ,  3 ..... 
Conversely, for any given sequence of states in S'"~ : Xll"~, ,'"'~ ,.t,a ~ 2  , ' " ,  ~ k  ' 

we can define a tube of trajectories in ~(S)  as 

O(n, {x',"',x•"'_ ..... x~" ) } )={r162  ''''_, Vi<~k} (2.14) 

In the case of uniqueness of the exiting path for the chain XC, N) we can 
conclude that 

Px(X,) e O(N, {X~o N) ..... x~N)}) (2.15) 

tends to one as fl--+ oo. 
Indeed 

{X, eO{N,  tlx'N'o ,"',~k~"Nl~ )}j = { X ~  N, =.x "'N), , V i = 0  ..... k} (2.16) 

and the probability of the second event tends to one as fl--+ oo if 
{xtN) ,~N)~ is the unique deterministic path exiting from Q c~ S tNI for the 0 , ' " ,  ~ k  l 

chain Xl, N). 
In the case in which there are several exiting paths for the process X~, N) 

we have to consider the union of these tubes. 
We can easily find, using the above construction, the results on the 

mean exit time and on the best exit point from Q previously obtained by 
Freidlin and Wentzell, without using the graph techniques. Indeed, by the 
results proved in ref. 12 it is sufficient to evaluate the quantities EaQ and 
P(X,o = y) for the renormalized chain X~, NI. 

In view of the determination of the minimal tube of trajectories that 
the stochastic process follows with high probability, we have to define a 
tube of exiting trajectories smaller than O(N, {X~o N~ ..... x~ N~} ). To this end 
we will need a complete description of the behavior of the original chain X, 
in the interval of time corresponding to the transition x ~N~ -+ ~,N~ of the 

- - i  "~ i + 1 

renormalized chain X', N). 
As we will see in the second paper of this series, we can complete this 

program by introducing particular sets of states in S called cycles; to each 
renormalized state x~ '') in S '') one can associated a suitable cycle C; in S. 
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These cycles C~ represent the subset of S containing the stable state in S 
associated to the renormalized state x~ ''~ where the process At, typically 
spends its time before the renormalized process XI, ") performs a single 
jump. 

In the rest of this paper we will consider the exit problem for reversible 
chains. We will not follow the strategy proposed in this section, but instead 
we will use the energy function H in order to give an explicit construction 
of the exiting tube. 

In the reversible case the whole analysis becomes simpler and more 
intuitive. 

The definition of cycles, the derivation of their properties, the deter- 
mination of best exit point from a domain Q, and the other interesting 
properties and propositions do not require the introduction of the 
Freidlin-Wentzell graphical method. A straightforward analysis of the 
energy landscape will suffice to get the desired results. 

Moreover, using reversibility, one can see a typical tube of trajectories 
during the first exit from a domain Q as the time reverse of a typical tube 
of descent from the boundary aQ of Q to the "bottom" of Q. 

3. THE CYCLES A N D  THEIR PROPERTIES 

We start our analysis of the reversible case. We consider an ergodic 
aperiodic Markov chain with a finite space state S and with transition 
probabilities P(x, y) satisfying the following assumption: 

Hypothesis M. There exists a function H: S ~  R + such that 

P(x, y) = q(x, y) e x p ( - f l [ H ( y )  - H(x)]  + ) (3.1) 

where q(x , y )=q(y ,  x) and (a)+ is the positive part ( :=a  v 0) of the real 
number a. 

The above choice corresponds to a Metropolis Markov chain which is 
reversible in the sense that 

Vx, x' ~ S :/~(x) P(x, x') =/.t(x') P(x', x) (3.2) 

with 

/~(x) oc e x p [ - f l H ( x ) ]  (3.3) 

Since the symmetric matrix q is independent of fl we immediately get, 
from (3.2), that Property ~ is satisified. 

We will use the above hypothesis (Metropolis form for P) in order to 
simplify the exposition. More general reversible Markov chains can be 
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considered. Moreover,  many propositions stated in the present paper can 
be extended even to the case of  almost reversible Markov  chainsJ ~4~ 

From (3.3) one immediately deduces that /~ is the unique invariant 
measure of  the chain. 

A path co is a sequence m:=x~ ..... xu,  N ~ N ,  with xj, .x).+~, 
j =  1 ..... N -  1, communicat ing states [i.e., P(.x), a)+ ~) > 0]. We often write 
co: x --* y to denote a path joining x to y. 

We say that a state x is downhill connected to a state y if there exists 
a path co = (Xo = x, xl ,..., xk = y)  with H(xi+ l)<~ H(xi), i = 0 ..... k -  1. 

A set Q c S is connected if Vx, x '  ~ Q there exists a path co: x --* x'  all 
contained in Q. 

Given Q c s,  we denote by U = U(Q) the set of all the minima of the 
energy on the boundary  OQ of Q: 

U(Q) = {z ~OQ : min H ( x ) =  H(z)} (3.4) 
x~OQ 

Given Q c S, we denote by F = F(Q) the set of all the minima of  the energy 
on Q: 

F(Q) = {y E O : min H(x) = H(y)}  (3.5) 
x E Q  

A connected set of  equal-energy states is called a plateau. It is easy to 
convince oneself that, in the framework of  our asymptotic estimates which 
are exponential in the parameter fl, we can identify these plateaux with 
single points. In other words, states which are equivalent with respect to 
the relation (2.5) of the previous section can be identified. 

It is immediate to verify that in the reversible case a state x is stable, 
in the sense of  definition (2.6), if either it is a local minimum of the function 
H or it belongs to a plateau equivalent to a local minimum. 

For  every : e S we denote by/5(z)  the plateau containing z. 
Given a set Q on which H is constant, H(x) =/7, Vx ~ Q, we define, by 

abuse of notation, H ( Q ) = / 7  

D e f i n i t i o n  3.1.  A connected set A which satisfies 

max H(x) = / 7 <  min H(z) = H(U(A)) 
x e A  zeOA 

is called a cycle. 

It is easy to see that, under the reversibility hypothesis for our  Markov  
chain, the above definition is strictly related to the one given by Freidlin 
and Wentzell (see ref. 4, p. 198). 
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In the following we will give some propositions (besides other 
definitions). Most  of them are intended to clarify the structural properties 
of  the cycles. For  some of them the proof  is immediate and we omit it. The 
most important  statement is contained in Proposit ion 3.7, for which we 
provide a proof. 

Proposition 3.1.  Given a state s  and a real number  c, the set 
of  all x's connected to ,g by paths with energy always below c either 
coincides with S or it is a cycle ,4 with 

H(U(A))>~c 

Proposition 3.2. Given two cycles A~, A2, either (1) A~c~ A 2 = 

or (2) A, c A  2 or, vice versa, `42~Ai. 

Proof. Let ,41 ~,42 ~ ~ .  It is immediate to see that one cannot have 
that, at the same time, 

3xl~OAlnA2, 3Xz~O,42n,4 I 

Otherwise one would have, at the same time, 

H(x,) < H(x,_) 

and 

H(xz) < H ( x  1 ) 

Thus, either At c A 2  or A2c,4, .  

Definition 3.2.  A cycle A such that Vz~ U(A) the set of  all x's 
communicat ing with z for which 

H(x) < H(z) 

belong to A is called a stable or attractive cycle. 

Definition 3.3.  A cycle ,4 for which there exists y*eU(A) 
downhill connected to some point x in ,4 c is called transient; given a 
transient cycle ",4, the points y* downhill connected to ,4" are called 
minimal saddles. The set of  all the minimal saddles of  a transient cycle ,4 
is denoted by :~(,4). 

A definition similar to 5P(A) can be given also for a general set which 
is not necessarily a cycle. 
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Definition 3.4. A transient cycle A such that 3.~r with 
H(.~)<H(F(A)) there exists y*~Se(A) and a path o9:y*-+ff  below y* 
[ namely Vx e co : H(x)  < H(y*  ) ] is called metastable. 

Definition 3.5. For each pair of states x, y e S  we define their 
minimal saddle 5a(x, y) as the set of states corresponding to the solution 
of the following minimax problem: 

Let, for any path co 

/~(o9) = max H(z) 
z ~ c o  

and 

Find 

/7.~.,, := min B(O9) 
o~: x ~ y 

5a(x,y)={z" H(z)=B.~.y;3og:x--* y , w ~ z "  leI(o9)=Jq.,, y} (3.6) 

From our assumptions on the chain it immediately follows that 
5a(x, y) = b~ x) Vx, y ~ S. 

We write Vx~S, Q c S ,  xCQ 

5P(x, Q) = {z e 5e(x, w) for some w e Q : min H(Sa(x, w)) = H(z)} (3.7) 
w ~ Q 

A saddle 5a(x, y) such that 5a(x, y) ~ x or 5Z(x, y) ~ y is called trivial. 
We notice that saddles between stable states, not equivalent with respect to 
the relation ~ introduced in (Z5), are not trivial. The saddles between 
non-equivalent stable states ( E M) will be called natural saddles. 

Notice that the previously defined set 5e(A) only contains natural 
saddles. 

Given a set Q, we denote by C(Q) the (possibly empty) set of its 
internal natural saddles; namely 

C(Q) = {ys  Q: 3x, x' eM, x,.~ x' : ye6e(x, x')} (3.8) 

Proposition 3.3. If A is a cycle, then: 

(i) For eachx ,  y, z e A  and wCA 

H(Se(x, y)) < H(Se(z, w)) 

(ii) For any x~A the set 5e(x,A c) does not depend on x and 
coincides with U(A). 
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Proof. By definition of cycle, for any x, y cA there exists a path 
o9: x ~ y  contained in A such that for any x ico)  one has H(xi)<H(U(A)).  
On the other hand, any path going from z c A  to wcOA maximizes H 
in 8A. 

Thus we have 

min H(Sa(x, w))=H(U(A))  
w ~ O A  

D e f i n i t i o n  3.6. Given a stable state x c M ,  i.e., a local minimum 
for the energy, we define the following basins for x: 

(i) the wide basin of attraction of x: 

/~(x) = { z : 3  downhill path o9: z - , x }  (3.9) 

(ii) The basin of attraction of x given by 

/~(x) = {z : every downhill path starting from z ends in x} (3.10) 

(iii) The strict basin or attraction of x, B(x), given by 

B(x) =/~(x) = S 

if the whole state space S coincides with/~(x). Otherwise 

B(x) = {: c B(x) : H(z) < H( U(B(x)))} (3.11) 

R e m a r k s .  (1) /~(x) is necessarily nonempty, whereas B(x) could 
be empty. B(x) can be seen as the usual basin of attraction of x with 
respect to the fl = oo dynamics. 

(2) Every local minimum for the energy is (a trivial) cycle. 

(3) The above definitions of different basins of attraction can 
immediately be extended to the case in which, in place of a local minimum 
x, there is a generic cycle A. In this way one gets /~(A), B(A), B(A). Of 
course one can even consider the basins of attraction of more general sets 
(not necessarily cycles). 

(4) The case of a Markov chain for which the state space S reduces 
itself to the basin of attraction of the absolute minimum :~ for the energy 
H is, in a sense, almost trivial; we shall refer to this case as to the one-well 
case. 

P r o p o s i t i o n  3.4. Suppose that S is not one-well. Let G be a subset 
of S and suppose that there exist x c G, x'  ~ G with the following properties: 
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(i) G is connected 

(ii) There exists a path w contained in G, o):x--*y* for some 
y* ~ U( G), with 

H(z)<H(y*) Vz e o), z=/=y 

(iii) There exists a path co outside G, co: y* -~ x'  with 

H(z)<H(y*) Vz e co, z=/=y 

[obviously one has to have H(x')< H(y*) ] .  
Then if A={z:3w:z--*x; Vyeo) ,  H(y)<H(y*)}--maximal con- 

nected set containing x with energy less than H(y*) :  

(1) AcG. 
(2) A is a cycle with U(A)~y*. 
(3) y* is a minimax between x and x', namely y* zO~ x'). 

The above proposit ion provides a constructive criterion to find the 
minimax between different points. 

The notion of  local minimum and of  its basins of  attraction will be 
useful to provide a decomposition of the cycles. More precisely, give a cycle 
A containing several local minima, we will consider some smaller cycles A,~ 
contained in A, by looking at the sequence of  internal saddles between 
minima in A. Let us start with a trivial corollary of  Proposit ion 3.2: 

Proposition 3.5. If a cycle A contains an internal natural saddle y, 
namely a nontrivial minimax between two stable states z, z' e A n M with 
energy H(y)<H(U(A)), then it contains all the cycles As such that 
ye U(Aj). 

Proposition 3.6.  Let A be a cycle and suppose that it is not  a sub- 
set (proper or not) of a strict basin of attraction of some local minimum 
x [i.e., C(A) is nonempty] .  Let y,  ..... y, ,  be the set of  its internal natural 
saddles with maximal energy; namely, if 

max H(z)=Ho (3.12) 
z e C t A )  

then 

Yl ..... y , . =  { y e  C(A) :  H(y)=Ho} 

The number  m of  internal saddles with maximal energy of  a cycle A is 
denoted by N(A). Then the following is true: 
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(i) The cycle A can be decomposed as 

A = A ~ w . . .  w A k w V  

where A I ..... Ak are transient cycles with 
Vxi~ Ai, .x)e Aj : ~(xi ,  xj) c { y, ..... y,,}. 

(ii) At least one of the Aj must 
F(A ) n { Uj A j} ~ (2~. 

(iii) We have 

V =  {y,} w .-. w {Ym} W P (3.14) 

where ~', if it is nonempty ,  is made by points with energy greater than or 
equal to H0 and it is completely at tracted by the union 

A = A j u  ... u A k  (3.15) 

namely 

(3.13) 

H(U(Ai))=Ho, i = I  ..... k, and 

contain points in F(A), i.e., 

P c ~ M = ~ ,  V c B ( A )  

(iv) For  all Yk there exists co: Yk ~ F(A): 

H(x)<~H o 'qxeco 

R e m a r k s .  (1) If we consider a cycle A being a subset of  the basin 
of at tract ion /~(x), for some x, then we have N ( A ) = 0 ,  . 4 = x ,  and 
v= A\{x}. 

(2) The simplest nontrivial example is the one in which k = 2 and the 
number  of  internal saddles of maximal  energy is one: 

A = A I w A 2 w V  

V =  ~ ' u  {y,} 

IF(A)I = 1: F(A)~{x}  

and 

Proof. Since A is a cycle, then H(U(A))>H o. By Proposi t ions 3.1 
and 3.5 the maximal  connected components  A1,..., Ak c A  of states in A 
with energy strictly less than Ho are cycles contained in A with 
H ( U ( A i )  ) = H 0 . 

Given Ai, Aj, VxiE A~, xje Aj, by Proposi t ion 3.3, 5a(xi, xj) takes the 
same value for every x i~A ~ and xj~Aj; moreover ,  Vxi~Ai, x j~Aj:  
5e(xg, xj)=: 5e(F(A,), F(Aj)) c {Yt ..... Y.,}. 

822/79/3-4-9 
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From this, points (i)-(iii) immediately follow. 
Point  (iv) easily follows from the fact that  

V x ~ A n M ,  H ( S P ( x , F ( A ) ) < . H o  

since {y~ ..... y,,} are the internal natural  saddles with maximal  energy. 

We recall now a simple but useful result based on reversibility 
providing a lower bound in probabil i ty to the first hitting time to a 
particular state. 

k e m m a  3.1.  For  every e > 0  and any pair  of  states y, x such that  
H ( y )  > H(x) ,  one has 

lim P.,.(ry < e x p { f l ( g ( y )  --  H ( x )  --  e)} ) = 0 

Proof .  The straightforward proof  can be found in ref. 5 (cf. L e m m a  1 
therein). 

The results contained in the following Proposi t ion 3.7 are less 
immediate  than the previous ones. As a mat ter  of fact, they are already 
known even in a more general situation (see ref. 4 for a p roof  based on the 
F W  graphical technique). We provide here, in the reversible case, a new, 
purely probabilistic p roof  which, in our  opinion, is much more  transparent.  
It is based on a simple intuitive argument  involving the construct ion of 
suitable events taking place on suitable, exponentially large in fl intervals 
of time. We see here (and we will see more  explicitly in the next section) 
the appearance of what  we have called the resis tance t imes  and why they 
play an important  role in providing an efficient mechanism of escape. 

Proposition 3.7.  Suppose Hypothesis  M is satisfied. Given a 
cycle A: 

(i) For  all e > 0 there exist flo > 0 and k > 0 such that  for any fl > flo 
and Vx ~ A 

Px(r~A < exp({ f l [H(U(A))  - H (  F( A ) ) + e ] } ) >1 1 - e -kP 

(ii) There exist 6 > 0, flo > 0, and k '  > 0 such that  for all fl > flo and 
Vx, x '  ~ A 

Px(r.~, < r~,~ ; r.~, < exp { p[  H(U(A) )  - H ( F ( A )  ) - 6]  } ) >>. 1 - e - k 'P  

(iii) Vx e A, W > 0, )~ e OA, and fl sufficiently large 

P x ( X ~  A = )3) t> exp{ - f l [ H ( 9 )  - H ( U ( A ) )  + e] } 
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Proof. The proof uses induction on the total number of the internal 
natural saddles ]C(A)[. We first assume that properties (i)-(iii) are verified 
for all the cycles A with IC(A)I <<, n, for a given integer n ~> 0, and we prove 
them for all the cycles A with ]C(A)I = n + 1; then we verify (i)-(iii) for the 
case n = 0, the basis of the induction. This case corresponds to A being the 
strict basin of attraction of a "plateau" F(A) of communicating points 
having the same energy [in particular, F(A) could be a single local 
minimum x]. 

Consider a generic cycle A with [C(A)I = n  +1 and with a number of 
internal maximal saddles N ( A ) = m .  We can use the decomposition given 
by Proposition 3.6, namely 

A =  {y  I ..... y,,,} w ~'w~l 

where ,~, defined in (3.15), is a union of cycles Aj which, beyond satisfying 
the properties specified in Proposition 3.6, have, V j =  1 ..... m, a number of 
internal saddles [C(Aj)I less than or equal to n, and then satisfy the 
recursive hypotheses (i)-(iii). 

Let us start by proving (i) for our cycle A. Given any sufficiently small 
e > 0 ,  let 

and 

T, = T,(e) := exp{fl[ H(yj)  - H(F(A) )  + e/2] } (3.16) 

T 2 = T 2 ( E ) : = e x p { f l [ H [ U ( A ) ) - H ( F ( A ) ) + ~ ] }  (3.17) 

Then the argument goes as follows: we will construct, for every state x e A, 
an event ~,. r, containing trajectories starting from x at time t = 0, taking 
place in the interval of time [0, T,] ,  and satisfying the following 
conditions: 

If ~.,. r, takes place, our Markov chain X, hits 0A before T~. 

We have 

. 

2. 

inf P(r > 0  with lim (1 -c~r,) r2/r' = 0  (3.18) 
x e A  p ~ -  

In particular, we will take 

mr, = exp{ - f l [ H ( U ( A ) )  - H(yj )  + e/4] } (3.19) 

Let us now divide the interval [0, T2] into q =  [T2/T1] (here [ ] means 
integer part) intervals of length TI; by properties 1 and 2 above of ~.,.r,, 
we easily get the proof of Proposition 3.7. For, if raA > T2, necessarily, by 

8 2 2 / 7 9 / 3 - 4 - 1 0  
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property 1, in none of the q intervals of length T~ can the (translation of) 
event ( , . r ,  have taken place; by property 2 and the strong Markov 
property, part (i) of our proposition directly follows. Then we are reduced 
to the construction of such an event #x.7",. 

Let us first give a rapid description, in words, of gx.r,. 
Let y* be a state in U(A); by definition there exists a downhill path 

from y* to the set A: 

. fo= y *, x l , x2 , . . . , . f k~A;  .fl,...,.~k_l E V 

[with H(.f~+~)~<H(Y;)]. We set k =  1 if y* is communicating with A. Let 
Ay. be the particular component of A hit by this path (i.e., .fk~Ay.). The 
event gx, r, is then defined by requiring that the process hits the set Aj. in 
a time much shorter than T~, and then, after reaching the boundary OAj. 
of Ay., follows the path obtained by -fo ..... :~k by time reversal. 

More precisely, let e' < e/2 and let 

r<>%'~aAj. : = m i n { t >  rA~.,'X,r 

where, as before, zAj. is the first hitting time to the set As.. Then 

~, T, := {rA~. < r ,  e-''/j} n {r~A%') < Tte  -''p} c~ {X ,>%.,=E k_ ,} 
- " J* OAj* 

roAj. .t + s = ' ~ k - - | - - s ~  

By using the strong Markov property we have 

P(~.T~) = ~ P x ( r A j . < T , e - ~ ' P ; X % . = y )  
) ' E A j *  

�9 P,.( { r~.~j. < T,  e-~'tt} n { X~%. = ~'k - ,  } ) 

"P( . f k_ l ,Y .k_z ) 'P( . f k_Z ,  Y k _ 3 ) ' ' ' P ( . f l , y * )  (3.20) 

We start by estimating the first term in the r.h.s, of (3.20). For any 
path co going from x to Aj., we define the following times, depending on o~: 

s o = 0 

tk = min{ t >>- sk_ , ; oo, ~.~} 

sk = min{ t > tk; cn, r Ay~} 

where jk=jk(cO) is such that co,kEAy ~ and k =  1 ..... /(co), so that j m o ) = j , .  
Let 

A : = , 4 w  {x  c A : H ( x ) =  H(y i )  } 
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From Proposit ion 3.6 it is easy to see that there exists a set of  paths 
going from x to A_j, with the following characteristics: 

Given any o3 e ~2, if o31--x with x r A, 03 first enters .4, following a 
downhill sequence, and then it no longer leaves .4. In A, 03 follows a well- 
specified sequence of cycles A~ ..... A j ,  and saddles y j ..... y~, spending a 
certain time in each Aj (typically of  order of exp{fl[H(yj)--H(F(Aj))}), 
exiting from Aj through the saddles yj E 0Aj. Moreover,  the path 03 does 
not visit more than once the same saddle yg and it is downhill for each 
t e ( s  k, tk+l)  for each k =  1 ..... l(03), l(03)<...m, and H(03,k)=H(Y(Ajk))= 
H(yg). The existence of  such an O suggests the way to estimate the first 
factor in the r.h.s, of  (3.20). In order to simplify the notat ion we set 

AjI(~ ) , . . . ,  Ajtt,_~ =:  A t ,"', A 

s,(03) ..... s~,~(03)=:s~ ..... s~ 

We have 

Px(r  /tt < Tl e-~'P) 

>jP,(Xt=03,,Vt<.Nt,)minP,..,~A, %A'</ - ] -~  e "J ~n{X*~ 

'".,-+At-,min P~ ( {roA,_t < ~ )  e-"'a} n { X:o~,_, =03,,_,} ) 

�9 P , % _ , ( X ,  = o3, +.,.,_ ], Vt ~ (0, t / -  s /_  1)) 

Now, since 03 is downhill for any t E(Sk_l, tk), V k =  1 ..... l, by using 
the obvious inequality 

P~, (X, = 03, +.,.,,, Vt ~ (0, t. +~ --s,,)) >1 e -~'a 

for some a ' ~  0 as fl ~ oo and by using the iterative hypotheses, which 
imply 

( { % A j < / _ ~  e r '  _~,.) J " ") max P " ~ c ~ X , % = 0 3 ~  > e  -~ 'a  
j =  I,...,/ 

with 0r ~ 0 as fl --* oo, we have 

Px(rA~ < T~ e -"P)  ~> e-~P 

with a --* 0 as fl ~ ~ .  
Notice that we have used o3 only to deduce from it a sequence 

A ~ ..... A~ of  cycles and a sequence of  downhill paths emerging from saddles. 
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Moreover, in the above argument it is essential to give the process the 
freedom to spend in each cycle Aj a suitable random time. 

Again by the iterative hypotheses the second term in r.h.s, of (3.20), for 
e' < e/2 and fl large, is estimated by 

Py({ raAj. < T, exp( -e'fl)} n { X~., r = -vk-, } ) 

/> exp(-ef t )  exp{ -- fl[ H( Xk - i  ) -- H ( U ( A j . ) )  ] } 

and in conclusion we obtain the following estimate: 

P(~,, r,) >I exp( - s exp{ -fl[H(y*) - H(U(Aj.)) ] } 

= exp(-~'fl) exp{ -fl[H(U(A)) - H(y,) ] } 

with s - ,  0 as fl ---, co. 
This concludes the proof of property (i) for A. 
Let us now go to the proof of (ii). We proceed similarly to what we 

did to prove (i), using recurrence in .4 and the strong Markov property. 
We first prove that, for some positive ~, 

lim P , . ( r . , . , < e x p { f l [ H ( U ( A ) ) - H ( F ( A ) ) - - 6 ] } = I  (3.21) 
f l  ~ ,72., 

Again for any pair x, x' eA appearing in (ii) we construct an event Ni,-.x'.r~ 
similar to 'r ~i,.,x'.r, contains paths of our process starting from x and 
ending at x' during a time interval at most T~. Notice that T~(e), for e suf- 
ficiently small, is of the form exp{fl[H(U(A)) - H(F(A) )  - ~] } [appearing 
in (ii)] with, say, f i= [ H ( U ( A ) - - H ( ) ) ) ] / 2 .  

We describe d~ i,. .,., . r, in words, leaving to the reader the easy task of a 
precise definition, along the same lines previously used for ~x.r,- 

If d~ takes place, then, starting from x, we first descend in a time 
much shorter than Tt(e)/3 to ,4 (if we still were not there) and this happens 
with a probability almost one for fl large; then in a time of order T~(e)/3, 
if e is chosen sufficiently small: (1) we never get out of the set ,4; this 
happens with probability approaching one for fl--* 0% as follows from 
Lemma 3.1, since, to get out of A, it will typically take a time of order 
e x p { f l [ H ( U ( A ) - H ( F ( A ) ) ] } ,  much larger than Tl(e) for e sufficiently 
small, because, of course, H ( y j ) <  H( U(A)); (2) we enter the cycle Aj, say 
A', containing x'. It follows from the recursive hypothesis (ii) valid for A' 
that, Ve > 0 and fl large, with probability almost one, before leaving A', and 
in a time typically much shorter that Tl(e)/3, we touch x'. This concludes 
the proof of(3.21 ). 
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By using again Lemma 3.1, we get the full condition (ii), since with 
probability tending to one as fl ~ ~ for every x E A, e > 0 one has 

raA > exp{ f l [n(U(A))  - H(F(A)) - e} (3.22) 

and choosing e sufficiently small, we have 

exp {fl[H(U(A)) - H(F(A) ) - ~]} < exp{fl[ H(U(A)) - H(F(A)) - e }  

Let us now prove point (iii). Given y~F(A), we can estimate from 
below the probability Px(X,o ~ = jg) by imposing that the process visits the 
state y before the exit time r0A as follows: 

Px(X.e.=9)>~ Z ~, P.~(X.,+A, Vs'<~s,X:=z) P_.(r.),<r~A) 
z e A  s=O 

• Z ..... 
t = l  .~1 , . . . , . ~ -  I ~ A \ y  

(3.23) 

By using reversibility and the already proved point (ii), valid now for 
the whole cycle A, we can estimate the last term in the r.h.s, of (3.23) as 
follows: 

~. ~ P.,,(X~ = ~] ..... X,_ ~ = g,_ ,, X, = p) 
t = l .~l,...,~.t_ l ~ A \ y  

= e  - a t " (~ - "~  ~ ~ P~(X] =~,_~ ..... Xt-1 =-f], X,= y) 
/ = l  :r , . . . , .~1- I E A \ y  

e-ptH(~'-H'"'J[P(P,Y) + ~ E P(~P,X,_,) 
t = 2  .Pt-l e A \ y  

x ~ P~,_,(XI = x , - 2  ..... X,_l = y)]  
"~1 ,..-.-~'t-- 2 E A\)) 

e -13 tHCp) -HI -v )+g]  min P , ( r ,  < rOA) 
z ~ A \ y  

Putting this estimate in (3.23 and using again point (ii) to estimate 
from below the quantity P,(r~, < roA), we obtain, for fl large enough, 

N 
Px(Xro ,~  = Y )  > / e - - f l [ H ( p ) - H ( y ) + 2 " ' ]  Z Px(Z0A ~>S) 

s=O 

>t e 



636 Olivieri and Scoppola 

It follows from the reversibility Lemma 3.1 that there exists ( going to 
zero as fl--, oo such that if we choose N=exp{fl[H(U(A))-H(F(A))-~]} 
we have Px(roA >/N) > 1/2. 

This concludes the proof of (iii). 

To conclude the proof  of our proposition we have to show that 
properties (i)-(iii) are true for A such that the number N(A) of internal 
natural saddles is zero, namely when A is part of (or coincides with) the 
strict basin of attraction of F(A), F(A) being a plateau in the previously 
specified sense. 

Suppose such an A is given. Property (i) easily follows by the same 
argument used before: we construct, for any x e A, e > 0 an event oP.~. r with 
T= T(e)= exp(fle/2) which consists in descending from x to F(A) in a time 
at most T/2 following a downhill path co from x to F(A), then in following 
an uphill path co' from F(A) up to U(A) in a time shorter that T/2. This 
path co' is the time reverse of a path going downhill from U(A) to F(A). 
The paths co and co' certainly exist, as A is the strict basin of attraction of 
F(A). 

With T2 given by (3.17) we easily verify, in the present case, (3.18) and 
(3.19) with T, := T(e), since (1) for every e > 0  the descent to F(A) along 
a downhill path takes place in a suitable finite time much smaller than T(e) 
with a probability approaching one as f l ~  oo, and (2) the ascent from 
F(A) to U(A) along an uphill path in a suitable finite time much smaller 
than T(e), Ve> 0 and fl sufficiently large, takes place with a probability 
larger than exp { fl [ H( U(A )) - H(F(A )) + e/4 ] }. Then property (i) easily 
follows. 

Combining the methods that we used to prove (ii) and (iii) starting 
from the inductive hypothesis with the idea leading to the construction of 
the above event g.~.r, we easily get, in our present case of A = B(F(A)), (ii) 
and (iii) (we leave the details to the reader). 

This concludes the proof of Proposition 3.7. 

We will analyze now in more detail the first exit from a cycle A. In 
particular, following the ideas developed in the framework of the so-called 
"pathwise approach to metastability, ''~l) we will prove asymptotic exponen- 
tiality of the properly renormalized first exit time from any cycle in the 
limit fl ~ oo. Then we will deduce the asymptotic behavior of the expecta- 
tion of this exit time; notice that the methods developed in the previous 
sections naturally lead only to estimates in probability of the exit times, 
but, as we will see, we can even get a good control on the tails of the 
distribution of these random variables and this will be important to get the 
asymptotics of the averages. 
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Let A be a given cycle. Given a point x~F(A),  let the time Tp= Tp(x) 
be defined by 

Px(r~A > Tp(x)) = e - l  (3.24) 

The above definition is interesting since Tp does not depend on x ~ A, in 
the sense of logarithmic equivalence; namely we have, Vx, y ~ A, 

lim ~ l o g [  Tp(x)] =0,  lim ~ l o g [ T ~ ( x ) ] = H ( U ( A ) ) - H ( F ( A ) )  
a-o~ L Ta(Y)J P-" 

(3.25) 

Moreover, the asymptotic distribution (in the sense of the most probable 
behavior) of the first exit time from A does not depend on x e A  in the 
sense of logarithmic equivalence. Namely, Vx, y e A, e > 0, 

lim P.~(Tp(y) e -~p < tea < Tp(y) e +~p) = 1 (3.26) 

Indeed Proposition 3.7 (i) and Lemma 3.1 give, Ve >0,  Vx~A,  

lim Px(exp(fl[ H( U(A )) - H(F(A)) -- ~] ) 

< r a A < e x p ( f l [ H ( U ( A ) ) - H ( F ( A ) ) + e ] ) = l  (3.27) 

From (3.24) and (3.27) it easily follows that, ~'E > 0, Vx ~ A, 

exp { fl[ H( U(A )) -- H(F(A) ) -- e} 

< T p ( x ) < e x p { f l [ H ( U ( A ) ) - H ( F ( A ) ) + e ] }  (3.28) 

which implies, Vx, y ~ A, (3.25) and then (3.26). 

P r o p o s i t i o n  3.8, Let T/~ = Tp(x*), where x* is a particular point 
in A chosen once for all. Then Vx ~ A, Vs ~ R +, 

lim P,. (roA > ) = e _ S  (3.29) 

Proof. Given s,  t ~ R +, we write 

Px(roA > (t + s) Ta(x)) 

= ~ Px(raA > ( t+s)  Tp(x); Xr~x),= y) 
y e A  

= ~ e.~(r~A > tTa(x); Xrp(xl, = Y) ey(roA > sTp(x)) (3.30) 
y e A  
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We can write, u  

Py(rOA > sTa(x)) = Py(raA > sTa(x); rx < T) + P r(raA > sTa(x); rx >1 T) 

(3.31) 

We have 

P.v(raA > sTa(x); zx < T) 
T--1 

= ~ P , . ( r ~ A > s T a ( x ) - t ) P y ( X r ~ A \ { x } , V r ~ [ 1 ,  t ] , X , = x )  (3.22) 
t = l  

From Proposition 3.7(ii) we know that there exists a 6 > 0 such that if the 
time T~ is defined as 

T~ = exp{fl[n(U(A)) - H(F(A))  - 6] } (3.33) 

we have, using (3.32) and taking also into account that for fl sufficiently 
large, T1 < sTa(x), 

P.,,(raA > sTa(x) ) -- o(fl) <~ P>,(raA > sTa(x); L,- < Tt ) 

<.,.Px(ZaA>S[Ta(x)--T~/s]) (3.34) 

where o(fl) denotes an infinitesimal quantity as fl ~ oo. 
Similarly we get from (3.32) and from Proposition 3.7 

P~(ZaA > sTa(x) )[ 1 -- o(fl)] ~< e.,,(ZaA > sTa(x); r.~ < T l ) <~ Py(ZOA > sTa(x) ) 

(3.35) 

From (3.24), (3.30), (3.34), and (3.35), since from (3.33) we know that 
limp_ o~ TI/Ta(x) = 0, we get 

lim e~.( roA > ) a-o~. \ T a ( x )  s = e - "  (3.36) 

On the other hand, from (3.34) and (3.35) we get that Vx, y e A ,  s ~ R  § 

a-~,:. T----~>s - - P , ~ T a ( x  ) s ) j  = 0  (3.37) 

and this concludes the proof of the proposition. 

P r o p o s i t i o n  3.9. For every x ~ A  and e>0 ,  if E.~ denotes the 
average over the trajectories of the process starting, at t = 0, from x, we 
have 

exp{ fl[ H(U(A)) - H(F(A))  - e] } 

< E x ( r a A ) < e x p { f l [ H ( U ( A ) ) - H ( F ( A ) ) + e ] }  (3.38) 
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Proof. For every integer-valued random variable ~ we have 

E(~)=  ~. P(~>~m) (3.39) 
m ~  I 

Now, following the argument of the proof of Proposition 3.7(i), based on 
the introduction of the set r using the estimate (3.17) with n T  2 in place 
of 7"2= Tz(e) and the strong Markov property, it is easy to get the 
following estimate: 

Px(raA > nT,_) < e x p ( - n c )  (3.40) 

valid for every x e A, e > O, for a suitable positive constant c independent 
of fl; we recall that 

T2 = Tz(e) := exp{fl[H(U(A)) - H(F (A ) )  + e]} 

Applying formula (3.39), we get 

(p) ~, r, cp)~. /> m) (3.41) E , ,  ( r o A )  = -~,, ~ -oA 
t i t  = | 

where we have put in evidence with a superscript the dependence on fl of 
the distribution of our process. 

Now the result of Proposition 3.9 follows, via (3.40), from standard 
arguments (see, for instance, ref. 1). 

4. T H E  EXIT  T U B E  

This section is devoted to the study of the typical trajectories of the 
first excursion outside a cycle A. 

We first consider the first descent from any point Yo in A to F(A).  
Then we will analyze the problem of a typical tube of trajectories during 
the first excursion outside a cycle A. As already observed by Schonmann r 
for the case of stochastic Ising models, it will turn out, using reversibility, 
that this tube is simply related, via a time reversal transformation, to the 
typical tube followed by the process during the first descent to the bottom 
F(A) of A. 

In order to. define the tube of typical trajectories of this first descent, 
the basic objects will be what we call standard cascades emerging from Yo. 
They specify the geometric characteristics of the tube; roughly speaking, 
these cascades will consist of sequences of minimaxes Y] ..... y,, toward F(A) ,  
decreasing in energy, intercalated by sequences of downhill paths o91 ..... o9, 
and sets QI ..... Q, which are a sort of generalized cycle. 
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We will prove that  our system, during its first descent to F(A), with 
high probabil i ty will follow one of the possible s tandard cascades; 
moreover,  we will also give information about  the temporal  law of the 
descent by specifying the typical values of  the r andom times spent inside 
each one of the sets Qi (see Theorem 1 below). 

Given any point Yo in A and a downhill path co] starting from Yo, we 
will define a set Q~ = Qt(yo,  09~). This set Q1 is a union of cycles having 
common  minimal saddles of the same height. Q~ will represent the first set 
where our process, during its first excursion to F(A), is captured if it 
follows the path 091; after entering into Q~ it will spend some time inside 
it before leaving it to enter, after another  downhill path  09 2 , into another  
similar set Q2 and so on until it enters a cycle containing par t  ofF(A) .  

T h e  C o n s t r u c t i o n  o f  Q 1  

Given Yo, let us consider a downhill path  09~ starting from Yo. We 
stress once more that  this path  is not in general unique. This means that 
the whole construction we are defining must be repeated for each path. 

Let xL be the first stable state in co] (see Fig. 1 as an example).  If such 
a point x~ is in F(A), then Yo belongs to the wide basin of  at tract ion of a 
connected component  G =  G( A, Yo, o91) of F( A ), i.e., yo ~ ]~( G). 

In this degenerate case we set Qt :=G(A, yo, 09~) and the cascade of 
saddles Y0, Y ~ ..... y ,  reduces to Yo. 

Y0 

Yl 

Xl Y3 

F(A) s 

2 3 4 5 6 7 8 9 ~o u ~2 ~3 ~4 ~5 ~6 ~7 ~8 ~9 20 2~ 

Fig. 1. P(x,y)={)iflx-yl>l.A={l,2,...,21}, A'"={2},A~-"={4,5,6},A~3'={8,9}; 
N=3; Q,={2 ..... 10}, Q,={I1, 12,13}, Q3={15,16}. 
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Let us now suppose that x, q~F(A). Let H~ be the energy of the saddle 
(not necessarily unique) between x, and F(A): 

H(6P(x,, F(A)) ) = Ht 

We denote by A ~ the cycle containing x, with energy less than H, .  
By definition of H,  we have that A ~l~ n F ( A ) =  ~ .  We define 

and 

U P(=) 

Remark. Notice that, by definition (see Definition3.3) the set 
6a(A I'1) is contained in aA I'~. Its extension ~t t J  (containing all the 
plateaus connected to 6 a(ll) coincides with 6e(x,, (A('~) c) [see (3.8)]. 

Let us now consider the cycles a(2~ A(~-~ with energy less than H~ i x  , , . . . ,  i A k 2  

not coinciding with A t'~ and with which S~ ('~ is downhill communicating 
and such that A) 2~ n F(A) = ~ ,  Vj = 1 ..... k2. If there are no such cycles, we 
define N =  1; otherwise we continue, by iteration, the construction as 
follows. 

We call A 12~ the union of all the cycles A5 2~ [which do not contain 
points in F(A)],  

Aal= U 
J 

and 67'~21 the union of all the plateaus containing minimal saddles of the 
A~. 21 which are not contained in 6 ~ > .  Now consider, similar to before, the 
cycles AI31 A(3~ with energy less than H,, not coinciding with any of ~ * l  ' ' " ' A ~ k  3 

the previous AJ 2~, with which 6 ~2~ is downhill communicating and such 
that At 3~ n F(A) = ~ ,  Vj= 1 ..... k 3. 

If there are no such cycles, we define N = 2; otherwise we iterate the 
construction. 

This procedure stops at a given finite index N=N(Xl ,  A). 
It easy to convince oneself that 

and 

V j = 2  ..... N: AtJ)chA(t)=J~ g l = l  ..... j - 1  

Vj= 2,..., N -  1: V I =  1 ..... j -  1 

822/79/3-4-11 
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We set 

QI = Q,(yo, col) :=  A {y' u U fi(z) 
j 1 j 1 z e U ( A I J  I) 

It is easily seen that QI is the maximal connected set, containing xl ,  
of points x such that 

H(St(x, F(A)) )= HI 

The boundary of  Q~ is given by 

t~QI=O"QIuOaQI, OUQl~OdQl=(~ 

where a"Q~ is made of points z with energy larger than HI and so, trivially, 
with 

H(SP(z,F(A)))> HI 

whereas OaQ~ is made of points z with energy smaller than HI ,  belonging 
to some cycle containing points of  F(A) and then such that 

H(St'(z,F(A)))<H1 

Let us call 5~ the subset of ~ t l ) w  . . .  w 5  ~ l u - ~  which is downhill com- 
municating with OdQl . Choose a point 3'1 in ~ and a downhill path COz 
starting from Yl not belonging to Q1. Start again from y~, o~ 2 a hierarchical 
construction totally analogous to the previous one. Denote by x2 the first 
stable state in 0.) 2 and by H 2 the energy of the saddle between x 2 and F(A). 
By definition H 2 < H~. As before, we construct new sets Q2 (depending on 
the choice ofy~ in ~ and of the path co2 starting from yj).  

If  we continue in this way and recursively construct a sequence of  the 
form )'2, 093, Qsy3 ..... we necessarily end up with a YM-I, tOM for 
some finite M, with xM belonging to a connected component  G* (plateau) 
of F(A). 

We set QM :---- G*. 
Suppose first that a particular choice is made of Yo, co~, Yl, 0~2 ..... 

YM-1, toM, compatible with the above construction. 
Then, automatically, x 2 ..... xM_ l, xM, QI ..... QM- l, QM are given. 
Let 

Y ( y o ,  COl, y l ,  co2 ..... yN_I,COM)=Yo~VCoIuQIur ..... QU_IWO~MwQM 
(4.1) 
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Any sequence like ff'(Yo, co~, Yl, (-02 . . . . .  YN-I,  tOM) obtained via the above 
construction will be called a standard cascade; it can be visualized as a 
sequence of falls and communicating lakes. 

Notice that, by construction, 

H()~_ i) < H(yj), m a x H < H ( y j _ l ) ,  j = I , . . . , M  
F( Q) ) 

and F(Q~) ..... F(QM-1) are strictly higher, in energy, than F(A). 
A particularly simple case is when each Qj is reduced to a single 

cycle A*. 
Now we can state our main result. 

T h e o r e m  1. Given a cycle A, for every yogA: 

We have (i) 

3 ~ > 0  such that lim P,.o(rr~A~ < e x p { f l [ H ( y ~ ) - H ( F ( A ) ) - ~ ] }  = 1 
/J  ~ oz .  

(ii) We have 

lim P,.o(Vt <<, rnA~ : x, ~ ~--(Yo, o91, Yl, o92 ..... YM-1, ogM) 
[J  ~ oc, 

fo r  s o m e  y 0 ,  ogt,  y t ,  ~ 2  ..... yM_~, ogae) = 1 

(iii) Moreover, with probability--+ 1 as f l--- ,~,  there exists a 
sequence Yo, c91, Yl, ~ YM- 1, ~oM such that our process starting at t = 0 
from Yo, between t = 0  and t=rF~A, after having followed the initial 
downhill path o91, visits sequentially the sets Q~, Q2 ..... QM-~ exiting from 
Qj through yg and then follows the path ogj+~ before entering Qj+I. 

For every e > 0 with a probability tending to one as fl--* ~ the process 
spends inside each Qj a time less than e x p { f l [ H ( y j ) - H ( F ( Q j ) ) +  e]}. 

Finally: before exiting from Qj it can perform an arbitrary sequence of 
passages through the cycles A {jl belonging to Qj. Each passage is made 
through a minimal saddle zj in the boundary of A~J~; for every e > 0 with 
a probability tending to one as fl---, ~ ,  once the system enters into a 
particular A ~j~, it spends there a time T: 

exp{fl[H(zj) - H(F(A'J))) - e] } < T <  exp{fl[ H(zj) - H(F(A'J~)) + e] } 

Proof. By construction, using Proposition 3.7 applied either directly 
to our original cycle A if y0 ~B(F(A))  or to the cycles in Q~ otherwise. The 
rest of the theorem also easily follows from Proposition 3.7 applied to the 
cycles contained in the Qj. We leave the details to the reader. 
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Now, given any cycle A, we want to describe, in the maximal possible 
detail, the first excursion from F(A) to OA. 

Following Schonmann,  I~1~ we first give some simple general defini- 
tions. 

Given x, y ~ S, we denote by 12*(x, y)  the set of  all paths co starting 
in x, visiting y at some finite time t, and never visiting x and y in between: 

I2*(x, y)  :=  {09 = xt ..... x, for some t: x I = x, x, = y; x2 ..... x ,_  ~ 4= x, y} (4.2) 

We denote by R the time reversal operator defined on finite paths: 

Vco :=  (xl ..... x,) : RCO :=o3 :=  (x, ..... X l )  (4.3) 

We naturally define, for every set of paths A, 

RA = { (5 = Rco; co e A } 

Let us call f,. the last time our process visits the state x before touching for 
the first time y, namely 

f~ :=  max{ t < ry : X, = x }  (4.4) 

Given a finite path cb = X l  ..... ")~t, we say that our process {X,},>o starts as 
(5 if XI = )71 ..... X, = if,. 

For  any x, y e S  we define a measure p on the (infinite) paths 
co=x l , . . . , x ,  .... starting at X(Xl : = x )  as follows: 

�9 Ifcor then p (co)=0 .  

�9 If coel2*(x, y), we set ~5;=co,. for all i < i n f { t > 0 ;  co,= y}, that is, 
r5 is the finite path given by the first segment of co before hitting y. Then 

p(co) = Px({X,} ,>/o starts as oh[co e Q*(x,  y))  

and by ~(co) the measure on the paths co = xl ..... x ..... given by 

~(co)=P,,({X,},>~ostartsasR~lco~12*(y,x)) if cocO*(y , x )  

p(co) = 0 otherwise 

In ref. 11 it is proven that, for every x, y e S, every A ~ O*(x, y), 

Px(Xt~A,  Vt~ [fx,  r y ] ) = p ( A ) = f i ( R A ) = P : , ( X , ~ R A ,  Vt~ [f,,, r.~]) (4.5) 

Let us now denote by 0 - F ( A )  the set of all 2 ~ F(A), uphill communicat ing 
with A\F(A).  Given a point 2 in 3-F(A) ,  consider the set V(2) of  all the 
points x ~ A uphill communicat ing with some point )3 s U(A) and such that 
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there exists a standard cascade #-(Yo = fi, col, Yl, co2 ..... YN- 1, coM) starting 
from ~ and ending in 2 : 2  will belong to some component G* of F(A); 
G* := QM and coM will end entering into QM at 2. 

Now we are able to state our main result about the typical trajectories 
realizing the escape from a cycle A. 

Theorem 2, Let 

f n A ) = m a x { t  < rs\A : X ,~F(A)}  

Call cS-A the set of all the points x ~ A  uphill connected to U(A) and 

# - =  ~ #-~,o (4.6) 
.v0 e/~-A 

the set of all possible standard tubes starting from points in 0 -A  and 
ending in F(A). Then: 

(i) 

PF~A)(X~s\A~ U(A); X, eR3- ,  Vt~ [friAr, Zs\A -- 1])-~ 1 a s  f l  ----~ 

(4.7) 

(ii) Given 2 r  and any x E A ,  

P.,.(3fie V(2): X, e R3- (yo= 9, col, y l ,  co 2 ..... YM--I, COM), 

Vte [f~, ry--  1] for some fi, col, Yl, co2,-.., YM-IcoM I Xf~A,=2) ~ 1 

a s  f l - - .  oo  

(4.8) 

(iii) During the first excursion from F(A) to S \ A ,  conditioning to 
Xf~,, = 2  [for some 2 E a - F ( A ) ] ,  to XTs~,_ 1 = 9 [for some 33~ V(2)], and 
following a particular "anticascade" R#-( y o = 9, 091, y ~, co2 ..... YN-1:' CO M) 

between f~ and ry, all the "time reverses" of the properties specified in 
point (iv) of Theorem 1 hold true; namely Ve > 0, with probability tending 
to one as fl--. ~ ,  our process, during the above-mentioned first excursion, 
visits the time reverse of the sequence specified in point (iv) of Theorem 1 
spending in each set the same typical times given there. 

Remark.  -In the particular case (relevant for the applications to 
stochastic Ising models) where the sets Q; always coincide with a single 
cycle Ai, it immediately follows from Theorem 2 that the typical tube of 
trajectories during the first excursion from F(A) to S \ A  is an anticascade 
starting from 2 ~ O - F ( A )  and ending in some y * ~ U ( A )  given by a 
sequence A~, col, Y~, A2, co2, Y2 ..... AM, oSM, y* with the properties: 
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(i) H(Yi)<H(.~i+l), 1=1  ..... M - 1 .  

(ii) Yi~S(Ai+l). 
Some o9 i can be empty; in that case ~; is also a saddle point in aA;. 
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